Modified parallel multisplitting iterative methods for non-Hermitian positive definite systems

نویسندگان

  • Chuan-Long Wang
  • Guo-Yan Meng
  • Xuerong Yong
چکیده

In this paper we present three modified parallel multisplitting iterative methods for solving non-Hermitian positive definite systems Ax = b . The first is a direct generalization of the standard parallel multisplitting iterative method for solving this class of systems. The other two are the iterative methods obtained by optimizing the weighting matrices based on the sparsity of the coefficient matrix A. In our multisplitting there is only one that is required to be convergent (in a standard method all the splittings must be convergent), which not only decreases the difficulty of constructing the multisplitting of the coefficient matrix A, but also releases the constraints to the weighting matrices (unlike the standard methods, they are not necessarily be known or given in advance). We then prove the convergence and derive the convergent rates of the algorithms by making use of the standard quadratic optimization technique. Finally, our numerical computations indicate that the methods derived are feasible and efficient. Communicated by Charles A. Micchelli. This work is supported by NSF of China (11071184) and NSF of Shanxi Province (2010011006). C.-L. Wang (B) Department of Mathematics, Taiyuan Normal University, Taiyuan 030012, Shanxi Province, People’s Republic of China e-mail: [email protected] G.-Y. Meng Department of Computer Science, Xinzhou Normal University, Xinzhou 034000, Shanxi Province, People’s Republic of China X.-R. Yong Department of Mathematical Sciences, University of Puerto Rico at Mayaguez, Mayaguez, PR 00681-9018, USA

منابع مشابه

Convergence of non-stationary parallel multisplitting methods for hermitian positive definite matrices

Non-stationary multisplitting algorithms for the solution of linear systems are studied. Convergence of these algorithms is analyzed when the coefficient matrix of the linear system is hermitian positive definite. Asynchronous versions of these algorithms are considered and their convergence investigated.

متن کامل

Non-stationary Parallel Multisplitting Two-Stage Iterative Methods with Self-AdaptiveWeighting Schemes

In this paper, we study the non-stationary parallel multisplitting two-stage iterative methods with selfadaptive weighting matrices for solving a linear system whose coefficient matrix is symmetric positive definite. Two choices of Self-adaptive weighting matrices are given, especially, the nonnegativity is eliminated. Moreover, we prove the convergence of the non-stationary parallel multisplit...

متن کامل

Stair Matrices and Their Generalizations with Applications to Iterative Methods Ii: Iteration Arithmetic and Preconditionings

Iteration arithmetic is formally introduced based on iteration multiplication and αaddition which is a special multisplitting. This part focuses on construction of convergent splittings and approximate inverses for Hermitian positive definite matrices by applying stair matrices, their generalizations and iteration arithmetic. Analysis of the splittings and the approximate inverses is also prese...

متن کامل

Sequential and parallel synchronous alternating iterative methods

The so-called parallel multisplitting nonstationary iterative Model A was introduced by Bru, Elsner, and Neumann [Linear Algebra and its Applications 103:175-192 (1988)] for solving a nonsingular linear system Ax = b using a weak nonnegative multisplitting of the first type. In this paper new results are introduced when A is a monotone matrix using a weak nonnegative multisplitting of the secon...

متن کامل

Parallel Quasi-chebyshev Acceleration to Nonoverlapping Multisplitting Iterative Methods Based on Optimization

In this paper, we present a parallel quasi-Chebyshev acceleration applied to the nonoverlapping multisplitting iterative method for the linear systems when the coefficient matrix is either an H-matrix or a symmetric positive definite matrix. First, m parallel iterations are implemented in m different processors. Second, based on l1-norm or l2-norm, the m optimization models are parallelly treat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:
  • Adv. Comput. Math.

دوره 38  شماره 

صفحات  -

تاریخ انتشار 2013